获取资料

基于Spark2.x开发企业级个性化推荐系统

基于Spark2.x开发企业级个性化推荐系统

聚焦算法原理,搭建企业级系统,给中级大数据开发工程师的刚需课

课程介绍

基于Spark2.x,聚焦算法原理,开发企业级个性化推荐系统

在大数据行业内,除了懂平台开发,还需要什么样的硬技能?答案是算法原理。懂得算法原理,比只会开发平台更具有竞争力。目前,熟悉推荐算法的人才非常稀缺,既懂推荐算法原理、又懂得如何用大数据技术实现的人才,将会非常受欢迎。另一方面,个性化推荐已成为互联网产品的标配,在大数据行业内,推荐系统主要应用于电商,资讯内容(视频或文字)平台(如:今日头条),本门课程是个性化推荐算法案例课,着力于从算法原理角度,提升大数据工程师硬实力,并结合Spark 2.x 最新版本,手把手教你把算法落地,带你从0 到 1 搭建完整的个性化推荐系统。

课程目录

第1章 课程介绍与学习指南

本节主要进行课程的介绍,学习路线与指南,如何更好的学习本课程?为什么要学习本课程,学习本课程具体能收获什么?

第2章 了解推荐系统的生态

本章带你了解推荐系统的生态,让你从思维上重塑对推荐系统的认知。了解推荐系统是由哪些关键元素支撑的,推荐算法的分类以及什么才算一个好的推荐系统

第3章 给学习算法打基础

本章回顾并梳理了学习算法必需的数学知识和统计学知识,帮助大家巩固基础,平滑过渡,为后面学习推荐算法做铺垫。

第4章 详解协同过滤推荐算法原理

本章介绍推荐算法中最常用也最受欢迎的协同过滤推荐算法。首先巩固学习协同过滤特有的数学基础,然后分别从推荐算法的三个类型:基于用户,基于物品,基于模型来展开,并且对它们进行代码演示。

第5章 基于Spark的协同过滤原理

本章讲解Spark内置的推荐算法:ALS。从算法原理、Spark上实现、源码阅读,这3个方面全面讲解ALS算法。

第6章 推荐系统搭建——需求分析和环境搭建

开始进行推荐系统的实操了!大家准备好了吗?这章我们进行对整个推荐系统做一个需求分析。并且手把手带领环境搭建。

第7章 推荐系统搭建——UI界面模块

先从简单内容起步,一般大数据开发工程师主要负责数据的收集和分析,这里为了演示方便我们制作了简单的前端页面,使用了 VUE、Element-UI和EChatrs

第8章 推荐系统搭建——数据层

做好前期准备,终于步入正轨了,大家是不是都按耐不住了?本章将带领大家开发项目的数据层的部分,分别实现数据采集、清洗、分析等功能。

第9章 推荐系统搭建——推荐引擎

本章将要介绍本次项目的重难点,推荐引擎模块的搭建。主要讲解推荐模块的几个核心:召回,过滤,特征计算和排序。逐步完成实时推荐架构的搭建。

第10章 推荐系统搭建——推荐结果存储

本章演示个性化推荐系统的评估模块的搭建。主要是介绍主流的测试模块A/B测试,逐步开发搭建一个完整的A/B测试后台

第11章 推荐系统搭建——推荐效果评估模块

本章演示个性化推荐系统收尾环节,评估模块的搭建。主要介绍主流的测试模块A/BTest,逐步搭建一个完整的A/B测试后台

第12章 知识拓展——基于关联规则的推荐算法

本章讲解两个主要的关联规则推荐算法,Apriori和FP-Growth,并通过Spark去演示这两个算法的实现。

第13章 知识拓展——基于机器学习的推荐算法

本章主要讲解主流的基于机器学习的推荐算法。首先介绍RBM随机网络原理,接着分别展示基于 RBN、CNN、RNN的推荐算法,演示如何实现。

第14章 知识拓展——基于内容的推荐算法

本章主要介绍主流的基于内容的推荐算法,分别介绍TF-IDF算法、文本向量化、用户行为向量化和长期模型。最后对所有算法知识以及课程项目进行一个总结和展望。

资源目录

基于Spark2.x开发企业级个性化推荐系统

评论0

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址